The time to think about your	
margin of error, to see whether	
it's small enough to be useful, is	when you design your study or experiment and decide on <i>n</i> .
To get a narrower interval	You need to have less variability in your sample proportion, \hat{p} ,
(decrease the ME) without	by choosing a larger sample, <i>n</i> .
giving up confidence,	
Law of Diminishing Returns	The larger the sample size, n , we have the narrower our confidence
	interval can be (at the rate of $\frac{1}{\sqrt{n}}$)
To calculate the sample size, <i>n</i> ,	Solve for <i>n</i> in:
necessary to reach conclusions that have a desired margin of error (degree of precision) and level of confidence:	$ME = z^* \sqrt{\frac{\hat{p}\hat{q}}{n}}$ by substituting:
level of confidence:	\overline{ME} = desired margin of error (as a decimal)
	z^* = critical value for desired level of confidence
	\hat{p} = estimate based on experience or 0.5 (most cautious)
	$\hat{q} = 1 - \hat{p}$